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Abstract

Core psychoanalytic constructs may be impossible to study directly using neuroscience and imaging methodologies. Nevertheless,

experimental paradigms have been developed and are being applied that are at least relevant to understanding the neural bases of certain core

theoretical constructs within psychoanalysis. These paradigms have demonstrated the likely contributions of: (1) the nucleus accumbens and

related limbic circuitry in assigning valence within the pleasure/unpleasure continuum of affective experience; (2) the reticular formation,

thalamus, amygdala, and cortex within arousal circuits in assigning personal salience to those affective experiences; (3) frontostriatal systems

in subserving top-down processing in the CNS, which in turn contributes to numerous important psychological functions, including the

control of drives and the construction of experience according to preestablished conceptual schemas—processes that likely underlie

cognitive distortions, projection, and transference phenomena; and (4) multiple memory systems, particularly the procedural learning

systems based within the dorsal striatum and declarative learning systems in the mesial temporal lobe, that likely contribute to memories

within the domain of the descriptive unconscious, and the interactions across affective and cognitive memory systems, that might contribute

to memory formations within the dynamic unconscious.
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1. Introduction

The advent of neuroimaging technologies has provided a

window onto neural circuits that likely subserve functions

closely related to numerous core psychoanalytic constructs.

Although the constructs that are most central to and most

defining of psychoanalytic theories and psychoanalytic

process are still debated [1–3], most would agree that

these include the concepts of drive, particularly drives

toward pleasurable aims and away from unpleasureable

ones, the regulation of drives or the activities that satisfy

those aims, transference, and the existence of unconscious

processes. Reviewed herein will be selected imaging studies
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that may relate directly or indirectly to neural systems

thought to subserve these psychological functions.
2. Pleasure and unpleasure

Freud never fully elaborated a comprehensive theory of

emotions. Instead, he defined a theory of biological drives,

positing that all living organisms seek to maximize

pleasurable experiences and to minimize unpleasurable

ones. Anxiety was regarded as a byproduct of conflicts

arising in the organism from pursuit of objects, the

attainment of which would produce both pleasurable and

unpleasurable consequences. Presumably Freud regarded

the neural substrate of the pleasure/unpleasure continuum as

comprising a single neurobiological system. In contrast to

this simple and reductionistic theory of drives and emotions,

however, the reigning theories and experimental paradigms

in affective neuroscience have subsequently largely posited

the existence of numerous emotional systems and corre-

sponding neural substrates. These theories hold that
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Fig. 1. Graphical representation of the affective circumplex. The horizontal

axis represents the valence dimension and the vertical axis represents the

arousal, or activation, dimension.
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emotions can be divided into discrete and independent

categories, with each emotional category being subserved

by a discrete and specific neural pathway. These theories of

discrete emotion have been critiqued elsewhere [4,5].

One particular experimental and theoretical model of

affect in psychology and affective neuroscience, however, is

remarkably consistent with the Freudian theory of affect.

Similar to Freud’s theory, this model also posits that valence

(a pleasure-unpleasure continuum) contributes to all

affective states. In contrast to Freudian theory, however,

this model postulates the existence of a second neurophy-

siological system—an arousal or alertness system—that is

independent of the first and that also contributes to all

affective states. Varying linear combinations of these two

physiological systems contributes to the experience of the

full array of emotions that we experience [4]. Joy, for

example, is the product of intense activity in the neural

system that subserves valence or pleasure, together with

moderate activity in the neural system that subserves arousal

(Fig. 1). Sadness, in contrast, is the product of intense

activity along the negative side of the valence system

together with a slight reduction along the arousal system.

Other emotions arise from these same two neurophysiolo-

gical systems, but differ from joy in the degree of activity in

each of the component systems. Cognitive interpretations of

these core physiological experiences help to label and

provide nuance that distinguishes affects positioned close to

one another on the two-dimensional affective circumplex.
2.1. Studies of affective dimensions

Imaging studies thus far have not directly assessed

activity in these two underlying dimensions of affect,

although in principle, the valence and arousal dimensions

can be manipulated systematically and parametrically;

ratings of each of these affective dimensions can then be

correlated with imaging-based indices of neuronal activity.

Regions in which these correlations are significant would
identify the two underlying neurophysiological systems that

together and in combination support affective experience.

Those experiments are underway now in our laboratory.

Until now, imaging studies have largely assumed that

emotions are discrete and largely independent of one

another. Most prior studies have employed subtraction

methodologies that are problematic if the Circumplex

Model of Affect is in fact correct. In these subtraction

methods, neural activity associated with a cognitive process

is identified by comparing one task with another that differs

from the first in only one or a small number of cognitive

processes of interest. This approach is problematic for

studies of affect because of the difficulty in generating

control stimuli that control adequately for the cognitive,

affective, and behavioral processes that are not of interest,

but that nevertheless are implicit or explicit components of

the primary task [6]. In a traditional subtraction design, for

example, neural activity during the viewing of prototypical

and highly arousing stimuli that induce fear, such as snakes

or a loaded gun, might be compared with neural activity

during the viewing of putatively ‘neutral’ stimuli, such as

household objects. Many would argue, however, that no

stimulus is affectively ‘neutral’, and that snakes, guns, and

household objects all activate both the valence and arousal

systems. Viewing snakes or guns presumably induces

automatically some degree of fear-like response—emotions

with negative valences and high arousal (in the upper left

quadrant of the circumplex); viewing household objects, in

contrast, might induce boredom, mild aversion, or

dysphoria—emotions with negative valences and low

arousal (in the lower left quadrant of the circumplex).

Following subtraction of the neural activity measured

during the viewing of each of these two classes of stimuli,

the negative valences will partially or completely cancel

themselves, and the differences in activity across the stimuli

will index primarily their differences in inducing arousal

systems or, more problematic and confusing yet, some

unpredictable difference in both valence and arousal. The

subtraction of these stimuli will not, however, isolate neural

activity associated only with ‘fear’ as a reified, discrete

emotion. These difficulties with subtraction paradigms and

with comparing physiological measures during the presen-

tation of emotion-inducing stimuli are only compounded

with the viewing of stimuli that emotionally are highly

ambiguous, such as the facial expressions that are currently

so ubiquitously studied. The facial expressions of surprise

and fear can be indiscriminable and yet have greatly

differing valences, whereas a smile can variously signal

happiness, pride, or condescending sarcasm [7,8].

2.2. Valence and arousal systems

Despite these considerable and unpredictable difficulties

inherent in subtraction paradigms during the presentation of

emotion-inducing stimuli, extant imaging studies using such

paradigms do provide suggestive but preliminary evidence
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for the existence of distinct neural systems associated with

valence and arousal. Imaging studies support findings from

a large number of studies in animals that the mesolimbic

dopamine system, which projects from the ventral tegmental

area to the nucleus accumbens, amygdala, hippocampus,

and prefrontal cortex, is centrally involved in the processing

of rewarding and pleasurable experiences. Electrical

stimulation of the orbitofrontal cortex and nucleus accum-

bens, for example, is so pleasurable that when allowed to

self-stimulate these regions, animals will starve or dehy-

drate [9,10]. Imaging studies following intoxication with a

variety of drugs have shown increases in blood flow that

correlate strongly with subjective ratings of euphoria

[11–15]. Conversely, hypoactivation or under-stimulation

of the mesolimbic system is associated in studies of drug

addiction with the experience of a wide range of negative

emotions, or with unpleasure on the valence dimension of

the Affective Circumplex [16]. This dysphoria and desire to

relieve it is thought to drive drug-seeking behavior [17,18].

Activity in the nucleus accumbens has also been shown to

change as subjects anticipate and respond to aversive stimuli

[19,20], suggesting directly that differential activity within

this region may signal differing responses within the

mesolimbic system to both positive and negative emotional

valences.

Whereas mesolimbic dopamine systems have been

implicated in the processing of pleasure and unpleasure,

the reticular formation has been implicated in mediating

arousal levels through its connections with the limbic

system and thalamus, and through those brain regions in

turn to large expanses of neocortex [21,22]. The arousal

system is thought to regulate the gating and tuning of

sensory stimuli, which are relayed via dense projections

from the primary and secondary sensory association areas to

the thalamus and amygdala. Most investigators agree that

the amygdala participates in the encoding and processing of

emotional salience [23–25]. Recent imaging studies suggest

increasingly that the amygdala responds both to appetitive

and aversive (i.e. both to positively and negatively

valenced) stimuli, and that greater activity in the amygdala

is driven primarily by the presentation of more arousing

stimuli [26–28]. Assessments of emotional arousal are then

relayed to the reticular formation through the amygdalor-

eticular pathways [29,30] and possibly through the associ-

ation cortices of the parietal lobe, as well [21]. Increased

activity in the reticular formation sends excitatory projec-

tions to the thalamus [22] which in turn increases activity

throughout the cerebral cortex, especially in the primary and

secondary sensory cortices [22,31]. Descending projections

from the reticular formation [22] also modulate muscle tone

and sweat gland activity, each of which correlates strongly

with subjective ratings of emotional arousal [32]. Consistent

with this hypothesized role of arousal systems in the

processing of emotional stimuli, amygdala lesions have

been shown in humans to impair the ability to recognize

affective stimuli; in non-human primates these lesions
produce unusual behavioral responses in which both

typically aversive and appetitive stimuli are treated as

non-arousing and non-emotional [33–36]. Lesions to the

reticular network can interfere with arousal even to the

extent of producing obtundation and coma [31]. In contrast,

imaging studies suggest that emotional hyperarousal in

states such as panic and mania increase activity in both the

amygdala and reticular activating system [37–39].
3. Self-regulatory control

The drives toward pleasurable activities must be weighed

against possible unpleasurable consequences, whether those

consequences are determined by internal (i.e. moral)

or external (i.e. social) proscriptions and constraints. Self-

regulatory control is required to take sufficient time to weigh

prospects for temporally proximal gains with potential,

temporally more remote, adverse consequences of action

plans—i.e. self-regulation is needed to weigh cross-

temporal contingencies of actions—as well as to monitor

and update action plans on-line as they unfold. Within

psychoanalytic theory, self-regulatory control helps to

define the broad class of ego functions [40].

Depending on the theoretical school and discipline, self-

regulatory processes are referred to by a variety of other

names, including ‘attentional processes’ [41], ‘executive

functions’ [42,43], ‘supervisory processes’ [44], ‘willed

action’ [45], ‘impulse control’ [46], and ‘top-down

processes’ [47–51]. Defined most generally, self-regulation

refers to the ways in which individuals filter, coordinate, and

temporally organize their innumerable perceptions, affec-

tive experiences, memories, thoughts, and reactions to stress

during the planning, execution, and monitoring of goal-

directed behaviors [52–57].

Maturation of these self-regulatory functions likely

defines the ontogeny of human development. Moreover,

disturbances in the maturation and function of these self-

regulatory functions likely contribute to the development of

a wide range of neuropsychiatric illnesses by releasing from

top-down, regulatory control the various underlying vulner-

abilities or diatheses to illnesses that every individual has to

some degree. Those vulnerabilities could simply reflect

normal, diurnal variations in mood or affect, an underlying

need to move or to perform some kind of semi-compulsory

behavior, or to act on various appetitive or aggressive

impulses and drives. Interindividual variability in these

underlying diatheses, together with disturbances in self-

regulatory control, can tip an individual over from being

predisposed to developing an illness into actually expres-

sing overt symptoms. Age-specific vulnerabilities in the

maturation of varying components of the neural circuitry

that mediate these self-regulatory functions likely contrib-

utes to age-specific prevalence differences and character-

istic ages of onset across various neuropsychiatric illnesses.
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3.1. Bottom-up and top-down processing

Understanding at a broad, conceptual level how the brain

is thought to effect self-regulatory functions requires

understanding in general how the brain processes infor-

mation, as a dynamic interplay of both bottom-up and top-

down processing of sensory data (Fig. 2). In bottom-up

processing, sensory information enters the cerebral cortex in

primary sensory regions, which process and encode the most

elementary features of sensory stimuli. Primary visual

cortex, for example, encodes short line segments and their

directional orientation, independent of position in the visual

field; information about color and ocular laterality are kept

segregated within particular cellular columns [58]. Primary

sensory cortices then pass information to sensory associ-

ation cortices, which bind together these elementary

features of a single sensory modality into slightly more

complex percepts. Elementary visual elements of primary

visual cortex, for example, are bound together into more

abstract visual percepts information, such that multiple line

segments now encode form and movement, and information

about ocular input now encodes depth perception. Infor-

mation within the association cortices of multiple individual

sensory modalities is then bound together into yet more

complex, multimodal sensory percepts within heteromodal

sensory cortices of the parietal and temporal lobes. Form,

movement, and depth perception in the visual modality, for

example, now become a rectangular, colored object in the

distance moving through space and emitting a blaring

sound. These multisensory percepts are further integrated

within even more complex, heteromodal cortices, located

primarily within the frontal lobe, that contribute to higher

order cognitive processes. These higher order processes

include, among others, working memory (the scratchpad of
Fig. 2. Bottom-up and top-down information processing in the CNS.

Information entering primary sensory cortices becomes increasingly more

complex and abstract in representational quality as it is passed to cortices

that are progressively more heteromodal. Projections from higher-order,

‘central executor’ regions within frontal cortices to lower order sensory

regions help to filter incoming sensory stimuli and to coordinate their

processing across space and time.
mental operations), longer-term memory, the binding of

sensory percepts with affective valence and arousal, the

planning and monitoring of motor responses, the execution

of those motor actions, and the detection of errors in

the actual responses compared with the planned responses

[59,60]. The same rectangular, colored object moving

through space in the distance and emitting a blaring sound

that is transmitted from lower order heteromodal association

cortices, for example, now is interpreted within frontal

cortices to be an approaching car sounding its horn,

prompting development of an action plan to avoid the car

and to seek safety elsewhere.

Activity in the centers that subserve these higher-order

cognitive processes must be coordinated across spatially

distinct brain regions and across time to produce smoothly

orchestrated and integrated perceptual processing, planning,

and motoric responses within highly complex environments

and rapidly changing task demands. These task demands

and plans for meeting them constitute a cognitive ‘set’ that

enhances performance in meeting task demands by allowing

a person to choose to attend preferentially to certain sets of

sensory stimuli over others and to plan execution of certain

sets of motor programs over other potentially competing

programs. These preestablished cognitive sets therefore

perform a vitally important filtering or ‘tuning’ function that

likely confers a performance advantage for that individual

and, ultimately, a survival advantage for the species. This

survival advantage undoubtedly contributed to the rapid

expansion of these neocortical ‘executive control centers’

throughout phylogeny.

These filtering and tuning functions are effected by

monosynaptic and polysynaptic connections of centers for

executive functioning within frontal cortices to all other

lower-order information processing centers, including

heteromodal, sensory association, and even primary sensory

cortices [61–68] (Fig. 2). This means that cognitive sets—

cognitive schemas that include biases, expectations, hopes,

and desires that have been informed and sculpted by both

constitutional predispositions and innumerable prior experi-

ences—modulate incoming sensory experiences even in

their most elemental form within primary sensory cortices,

selecting for preferential processing a relatively small

number of stimuli from among the billions of stimuli that

bombard sensory organs and cortices at each instant of

waking life.

3.2. Imaging studies of normal self-regulation

A number of experimental paradigms to study self-

regulatory processes have been developed or adapted for the

scanning environment. These paradigms generally have in

common the requirement that they place on the subject of

suppressing a more automatic behavior to perform instead a

less automatic one. These tasks are therefore regarded as

experimental models for studying the resolution of beha-

vioral conflict and the regulation of impulse control.
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Perhaps the most commonly studied paradigm of this kind

is the Stroop Word-Color Interference Task. This task

requires suppression of the over-learned, more automatic

tendency to read words such as ‘R-E-D’ or ‘B-L-U-E’ to

perform a less automatic task, the naming of visual colors.

Colored words are presented visually to subjects who are

instructed to name the visual color, not what the word reads.

When the color that the word denotes matches the name of the

visual color (e.g. when viewing the word ‘R-E-D’ written in

red ink), subjects perform the task easily, as indexed by their

rapid responses and infrequent errors. When the color that the

word denotes does not match the name of the visual color,

however (e.g. when the word ‘R-E-D’ is written in blue ink),

subjects have much more difficulty with the task, as indexed

by their slower responses and more frequent errors. In this

latter condition of the task, they must inhibit the tendency to
Fig. 3. Activation during self-regulation in the Stroop and Simon tasks.

These are axial images (parallel to the floor in a standing person). Slices

positioned lower in each column are positioned lower in the brain and move

progressively higher in each successive slice with a higher position in the

column. The similarity in pattern of activations across these two tasks,

despite their drastically differing stimulus and response characteristics, is

obvious. P, parietal cortex; F, frontal cortex; S, striatum; R, right; L, left.
say ‘Red’ when the correct utterance is ‘Blue’—i.e. they

must engage self-regulatory control.

When brain activity is measured and compared across

these two conditions, broad expanses of the cortex and

subcortex are shown to be more active during the second

condition than the first (Fig. 3). These include prefrontal,

anterior cingulate, anterior temporal, parietal, and

visual association cortices, as well as basal ganglia regions

[69–71], indicating that a large network of brain regions

subserves self-regulatory processes in this task. Further-

more, neural activity during self-regulation within the

anterior cingulate and associated mesial prefrontal cortices

seem to correlate with activity in other brain regions

significantly more often than would be expected on the basis

of chance alone (Fig. 4), an impression that has been

confirmed using formal statistical analyses of regional

intercorrelations [69]. Although preliminary, these findings

suggest that the anterior cingulate and mesial prefrontal

cortices may compose the seat of higher-order activity in the

frontal lobe that helps to organize the top-down regulation

of activity across space and time in lower-order primary

sensory and association cortices.

Other tasks involving self-regulatory control have been

shown to produce nearly identical patterns of activation as

the Stroop. The Simon Spatial Incompatibility Task, for

example, instructs subjects to indicate, with one of two

possible button responses, the direction in which an arrow is

pointing (left or right). Individual arrows, however, appear

on one or the other side of a screen. When the side on which
Fig. 4. Intercorrelations among regional activations during a self-regulatory

Task. The lower row of images depicts the lateral aspects of each cerebral

hemisphere. The upper row depicts the medial surface of the corresponding

hemispheres, though inverted (the top of the image is the bottom of the

brain, and vice versa), similar to window shutters for the low row. More of

the correlations across long distances involve the anterior cingulate and

mesial frontal cortices than would be expected on the basis of chance alone.

Other correlations likely reflect local area connections within the brain. Red

and blue triangles superimposed on the brain represent increases and

decreases in activity during self-regulation, respectively. In green outline

and green numbers are rough delineations of Brodmann’s cytoarchitectonic

units. R, right; L, left.
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the arrow appears matches the direction in which the arrow

points (e.g. a leftward pointing arrow appears on the left side

of the screen), subjects perform the task rapidly and with few

errors. When the side on which the arrow appears does not

match the direction in which the arrow points, however (e.g. a

leftward pointing arrow appears on the right side of the

screen), subjects perform the task much more slowly and

with more errors. Using rigorous statistical measures of

concordance, this task was shown to produce a pattern of

regional brain activation that was remarkably similar to that

produced by the same subjects performing the Stroop task

(Fig. 3) [71], despite the use of stimuli and response

modalities that were entirely different from those of the

Stroop. This similarity in pattern of brain activity suggests

strongly that the Simon task is a nonverbal analogue of the

Stroop, and that their common patterns of brain activation

reflect an underlying similarity in task demands and

information processing functions, which are to regulate the

more automatic behavior in order to perform a less automatic

one—i.e. to engage self-regulatory, top-down control

processes.
3.3. Self-regulatory systems in psychiatric illnesses

The self-regulatory circuits that have been identified in

normal individuals have been implicated repeatedly in

the pathophysiologies of a wide range of neuropsychiatric

illnesses. Disturbances in these circuits are likely to be rarely,

if ever, causal in and of themselves. Instead, disturbances in

these circuits likely act in concert with underlying disturb-

ances of a constitutional or acquired nature in other neural

circuits that subserve important neuropsychiatric functions,

such as those that subserve motor planning and execution,

affect, and attention. The combination of disturbances in

these latter circuits with dysfunction in self-regulatory

systems may then take what is otherwise a vulnerability,

predisposition, or diathesis for developing an illness and tip it

over into the manifestation of symptoms and patterns of

functional impairments that are designated an overt
Fig. 5. Brain activation during the self-regulatory control of unwanted tic behaviors

slice positioned just above the orbits. The right caudate nucleus increases in activity

during the willful suppression of tics compared with their spontaneous release. (B) G

GP, globus pallidus; Th, thalamus; R, right; L, left; red or yellow, increase in neur
disease—as Tourette Syndrome (TS), for instance, Atten-

tion-Deficit/Hyperactivity Disorder (ADHD), or Bipolar

Disorder.

Neuroimaging studies increasingly suggest that the

neural basis for these disorders resides in anatomical and

functional disturbances of Cortico-Striato-Thalamo-Corti-

cal (CSTC) circuits. These circuits loop between cortical

and subcortical brain regions. They are composed of

multiple, partially overlapping but largely ‘parallel’ path-

ways that direct information from the cerebral cortex to the

subcortex, and then back again to specific regions of the

cortex. Although multiple anatomically and functionally

related cortical regions provide input into a particular

circuit, each circuit refocuses its projections back onto only

a subset of the cortical regions contributing to the input of

that circuit [72–74].
3.3.1. Tourette syndrome

TS is a disorder of motor and vocal tics. Tics are usually

preceded by a vague discomfort or urge to move the body

region affected by the tic [75]. This ‘premonitory urge’

relentlessly builds in intensity until the individual capitu-

lates to the urge and performs the tic. This typically brings

immediate but temporary relief from the urge, only to have

the urge build quickly again and reinitiate the cycle of

building tension, capitulation, and relief. Tics therefore

involve sensorimotor impulses that individuals feel must be

actively inhibited. Tics can be suppressed voluntarily, but

not indefinitely [76,77]. TS is therefore regarded by many to

be primarily a disorder of impaired control of impulses and

disordered self-regulation, primarily in the motor domain.

In a functional imaging study designed to identify the

self-regulatory systems that subserve the control of tic

symptoms, adults with TS alternated between allowing

themselves to tic freely and suppressing their tics com-

pletely [77]. Tic suppression produced increased activity in

numerous cortical regions involved in self-regulatory

control, especially prefrontal and temporal cortices, and in

the right caudate nucleus (Fig. 5). Tic suppression decreased
. These are all axial slices. (A) Activation in a single subject: This is a ventral

and the lenticular nucleus (putamen and globus pallidus) decrease in activity

roup activation. F, frontal cortex; AT, anterior temporal cortex; S, striatum;

al activity; blue, decrease in neural activity during tic suppression.



Fig. 6. Basal ganglia volumes in ts and normal control subjects. The asterisk

denotes group differences in the caudate nucleus that are statistically

significant.
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activity in the ventral globus pallidus, putamen, and

thalamus bilaterally. The severity of tic symptoms corre-

lated with the change in activity of the basal ganglia and

thalamus, indicating that as symptom severity increased,

changes in subcortical activity during tic suppression

decreased. Activity in prefrontal cortices, moreover,

correlated positively with activity in the caudate nucleus,

and caudate activity in turn correlated inversely with

activity in the globus pallidus, putamen, and thalamus.

These findings suggest that increases in activity in inferior

prefrontal cortices during tic suppression increases activity

in the caudate nucleus via excitatory frontostriatal projec-

tions. Increased activity in the caudate then decreases

activity in the rest of the basal ganglia and thalamus via

known GABAergic inhibitory projections between these

nuclei. Inverse correlations of subcortical activation with

symptom severity indicate that the changes in neural

activity of subcortical regions—increases in the right

caudate and decreases in the rest of the subcortex—

participate in the suppression of tics, and when these

frontostriatal braking mechanisms fail, tics are progress-

ively more likely to escape the inhibitory influences of these

circuits on motor behavior. The correlations of symptom

severity with the magnitude of change in the pattern of these

braking systems throughout all subcortical regions (Table 1)

are likely initiated upstream at the point of entry to the

subcortical portions of the CSTC circuits, in the projections

either into or out of the caudate nucleus. Dysfunction of the

circuits initiated within the caudate as the most likely site of

origin of disturbances in the self-regulatory control of tic

symptoms is consistent with the reduced size of the caudate

nucleus that was detected in both children and adults in
Table 1

All subcortical regions changed in activity significantly during the

voluntary suppression of tics

The right caudate increased in activity and all other subcortical regions

significantly decreased in activity during tic suppression. Furthermore, the

magnitude of those respective changes in activity correlated inversely with

the overall severity of tics for the month proceeding the scan in each of the

subcortical regions, indicating that the more subjects were able to generate

this overall pattern of change in activity, the fewer were their symptoms.

Given the known pattern of information flow through the subcortex, the

significant correlations with severity in these regions were hypothesized to

originate upstream in this flow, in or around the caudate nucleus. r,

Pearson’s correlation coefficient; P, P-value; R, right; L, Left.
a study of 154 individuals with TS and 130 healthy controls

(Fig. 6) [78].

The massive activation of the cortex during the control of

tic symptoms prompted measurement of cortical volumes in

this same large sample subjects to determine whether

anatomical disturbances in the cortical portions of regulat-

ory systems are involved in the pathophysiology of TS [79].

Significantly larger volumes were detected in the prefrontal

volumes in TS children and smaller prefrontal volumes in

TS adults (Fig. 7). Volumes of prefrontal cortex moreover

correlated significantly and inversely with the severity of tic

symptoms—in other words, larger prefrontal volumes

seemed to be helpful in reducing the severity of tics. The

association of larger prefrontal volumes with fewer tics and

activation of this region during the control of tic symptoms

is consistent with a vast number of animal studies [80–86]

and a growing number of human imaging studies [87–96]
Fig. 7. Correlations of prefrontal volumes with age. In black, open triangles

are volumes for normal control subjects. Volumes are minimally associated

with age. In gray, solid circles are volumes for TS subjects. Volumes

correlate inversely with age. Larger prefrontal volumes in persons with TS

are attributable to larger volumes in children. Adults with TS have smaller

prefrontal volumes than do control adults.



Fig. 8. Theory of frontal hypertrophy in persons with TS. Acitvity-

dependent plasticity is thought to underlie the larger prefrontal volumes

detected in children with TS. Failure of this plastic response may contribute

to more severe symptoms and persistence of illness into adulthood, thereby

accounting for smaller prfrontal volumes in adults with TS.
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showing that the repeated activation of neurons changes the

architecture of those neurons. Most often, this architectural

change involves an increase in the number of synapses, but

it can also involve a change in the pruning of axons or

dendrites, or even a change in the overall number of neurons

as a consequence of altered rates of neurogenesis and

apoptosis, or naturally occurring cell death [97–100].

The persistent and continual need to suppress tics—

throughout the school day, with friends in social settings,

and at home—and the massive activation of prefrontal

cortices that this entails, is thought to induce in children

with TS an activity-dependent hypertrophy of neurons in the

prefrontal cortex. Smaller volumes in these regions provide

insufficient inhibitory reserve to help suppress tics,

consistent with numerous preclinical and clinical studies

suggesting that the prefrontal cortex plays an important role

in inhibitory control [101–109]. A failure, for reasons

unknown, in either the activation of prefrontal cortex or in

the plastic hypertrophy in response to this repeated

activation, is thought to contribute to disturbances in the

ability to modulate the activity in the basal ganglia that we

believe generates tic behaviors. Failure to induce this plastic

response produces relatively smaller prefrontal cortices.

Smaller prefrontal volumes in adults with TS in

turn contributes to those individuals remaining highly
Fig. 9. Morphological abnormalities at the brain surface of children with ADHD.

with ADHD. These are in primarily inferior prefrontal and anterior temporal reg
symptomatic, which is uncharacteristic of the adult outcome

of most children who have tics or TS (Fig. 8) [110–113].

3.3.2. ADHD

Comprising the symptomatic triad of inattentiveness,

hyperactivity, and impulsivity, this is a prototypical

syndrome of disordered self-regulatory control. Implicated

most consistently in its pathophysiology are abnormalities

in prefrontal cortex and basal ganglia. Reduced metabolic

rates have been reported in the premotor and somatosensory

cortices of ADHD adults [114]. Adolescents with ADHD

have reduced metabolic rates in, among other regions, the

left anterior frontal area, and metabolism in these areas

correlate inversely with measures of symptom severity

[115]. Volumes of the prefrontal cortex and globus pallidus

may be smaller than in healthy controls [116–119].

A morphological study detected a 3% reduction in overall

brain size in 152 ADHD children compared with 139 controls

[120]. Group differences in brain subregions using relatively

coarse measures exhibited little regional specificity,

although the regions in which the largest percent reductions

in volume were detected across diagnostic groups included

the frontal and temporal white matter (6.3 and 9.2%,

respectively). These findings may suggest that morphologi-

cal abnormalities in children with ADHD affect widely

distributed neural systems. Alternatively, the findings could

also suggest that ADHD is morphologically heterogeneous,

reflecting its undoubted etiologic heterogeneity, and that the

morphological heterogeneities manifest as reduced overall

brain size when using population-based statistics.

More refined morphometric procedures have yielded

greater evidence of regional specificity in this condition.

Detailed analyses of the cortical surface in a group of

27 school-aged children with ADHD and 46 matched

control subjects found reduced regional brain size localized

in inferior portions of the dorsal prefrontal and anterior

temporal cortices bilaterally (Fig. 9) [121]. Prominent

increases in gray matter were observed in large portions

of the posterior temporal cortex bilaterally. These fronto-

temporal abnormalities are consistent with the self-regula-

tory deficits long noted as the hyperactivity, distractibility,

and impulsivity of children with ADHD. In particular, the

volume decrements in inferior prefrontal regions are
Red and yellow indicate regions that were significantly smaller in children

ions.



Fig. 10. Abnormalities in activation of ventral prefrontal cortices of adults with bipolar disorder. Disturbances in rostal portions of the ventral prefrontal cortex

(‘contrast’) are shown here to be attributable to decreases in activation that was detected in healthy controls.
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consistent with preclinical studies implicating this region in

the regulation of impulses [101–109], whereas the anterior

temporal region belongs to the heteromodal cortices that are

thought to subserve an attentional focus.
3.3.3. Bipolar disorder

The core disturbance in persons with Bipolar Disorder

(BD) may originate in dysfunction of self-regulatory

systems. Individuals with BD, for example, could be

considered unable to regulate emotions, behaviors, and

thoughts, as evidenced by their emotional lability, thought

disorder, and pursuit of hedonic activities in spite of adverse

consequences, all of which constitute the core phenotype of

this illness.

Findings from neuroimaging, postmortem, and neurop-

sychological studies suggest that state- and trait-related

disturbances in the anatomy and function of frontostriatal

circuits underlie the abnormalities in attention, cognition,

and impulse regulation in BD. Mania has been associated

with decreased activity in ventral and increased activity in

dorsal prefrontal cortices [122,123]. Decreases in gray

matter volume [124], glial cell density [125], and increased

levels of intracellular second-messengers have been

reported in the anterior cingulate and prefrontal cortices of

persons with BD [126,127]. Neuropsychological disturb-

ances on tests of attention, memory, and executive

functions, have been reported in acute episodes of BD

[128–135] and seem to endure between acute BD episodes,

further implicating stable abnormalities in prefrontal
Fig. 11. Abnormal striatal activation in adolescents with bipolar disorder. (A) In

values. (B) Correlations of activation with depression scores in the bipolar subje

striatum and rostroventral prefrontal cortex.
functioning of persons with BD [130,134]. Lesions to the

ventral and medial prefrontal cortex [136] can produce

changes in regulation of emotions, attention, and behavior

similar to the symptoms of BD [136–140].

The Stroop task has been used to study self-regulatory

functions in 36 adults with BD (11 with elevated mood,

10 with depressed mood, and 15 euthymic) and 20 matched,

healthy control subjects [141]. The elevated mood group

exhibited deficient activation of inferior prefrontal cortices

compared with the euthymic, depressed, and healthy control

groups. The depressed group, in contrast, activated this

region more than did either the euthymic, manic, or healthy

control groups. These findings may represent state-specific

abnormalities in regional brain function in the BD group.

Furthermore, the BD subjects as a group, regardless of

affective state, exhibited deficient activation in inferior

prefrontal cortices of the left hemisphere compared with

the healthy control subjects. The three BD mood groups did

not differ from one another in this region, but they all

differed significantly from activation in the control group

(Fig. 10), suggesting that this finding represents a trait

abnormality in adults with BD.

Scanning of adolescents with BD during performance of

the Stroop showed that brain activation was greater in the

left putamen of the bipolar group than in controls (Fig. 11A)

[142]. In the BD group, the severity of depressive symptoms

was associated with signal increases in the ventral striatum

(Fig. 11B). Age correlated positively with bilateral

rostroventral prefrontal and striatal activation in the healthy
creased activation in left putamen and inferior thalamus relative to control

cts. (C) Activation correlated positively with age in healthy adolescents in
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group but not in the bipolar group (Fig. 11C). The absence

of prefrontal abnormalities observed previously in adults,

and the absence of the age-related increases in prefrontal

activity observed in normal controls, suggest that a

developmental disturbance in prefrontal function may

emerge during adolescence in individuals with BD.

Volumes of the amygdala and hippocampus were found

to be smaller in adolescents and adults with BD and

compared with those of healthy control subjects [143].

Volume reductions were more prominent in the amygdala

(16%) than in the hippocampus (5%), and they affected

adolescent and adult subjects equally, suggesting that the

abnormalities likely manifest early in the course of illness.

Together with the findings of prefrontal dysfunction in

functional imaging studies, these volumetric studies suggest

that abnormalities in the amygdala and hippocampus are

released from the normal top-down, regulatory control that

is based in the neural projections from the prefrontal cortex

to the mesial temporal lobe. Release from regulatory control

then may contribute to the exaggerated changes in mood and

affect that define BD.
Fig. 12. Indeterminacy of sensory percepts. Sense data can be ‘interpreted’

according to predefined schemas in numerous ways. Which among several

interpretations of the data is the one perceived is ultimately determined by

conceptual schema that influence sensory perceptions via top-down

projections from higher to lower order information processing centers

within the CNS.
4. Transference

Despite impressive progress in understanding the neural

bases of sensory and motor systems, learning and memory,

and other higher cognitive functions, relatively little

progress has been made in understanding brain organization

that underlies the psychological functions that are encoun-

tered most frequently and consistently in therapeutic

settings. These include cognitive distortions, projections,

and transference phenomena. These psychological functions

are difficult, if not impossible, to study using animal models.

Insight into the neural bases of these processes in humans is

therefore likely to be relegated solely to neuroimaging

studies, the only means currently available for studying

brain function noninvasively and in vivo. Neuroimaging

studies of these complex processes, however, have been

difficult to design, largely because if functional studies are

to be interpretable, they require the comparison of images

acquired during the task of interest (e.g. cognitive distortion,

projection, or transference) with images acquired during a

control task that differs from the first task by one or, at most,

only a few cognitive processes [6]. Both the active and

control tasks for the study of these processes have been

difficult to design and implement. Clearly, the processes

cannot be captured in neuroimaging experiments as they

would arise in naturalistic, therapeutic settings, at least not

with currently available technologies. The only alternative

currently is therefore to develop paradigms that can serve as

valid experimental models for these processes and that can

be invoked on demand within a scanner.

The processes of cognitive distortion, projection, and

transference may have reasonable analogues that have

been developed in the field of cognitive neuroscience.
Common to all three of these psychological processes is the

active organization of sensory percepts and experiences

according to anteceding, preexisting mental schemas, which

we have seen defines the top-down processing of incoming

sensory information within the brain. This active organi-

zation and construction of sensory experience is facilitated

by the inherently indeterminate nature of sensory experi-

ence [144–154], by which is meant that any given ensemble

of sensory data can be assembled and constructed into

multiple, mutually exclusive entities [155]. Four sensory

elements (dots), for example, can be associated in various

ways to produce a diamond, a square, or a circle (Fig. 12). A

person viewing only the four data points might be

predisposed to identify or ‘see’ in them either of those

shapes, and that predisposition would presumably represent

a preexisting schema that developed as a consequence of

some biological or experiential determinant, or some

combination of both. Interpreting indeterminate sensory

experience according to predefined schemas is the basis for

psychological projective tests of personality.

Several classic paradigms in cognitive neuroscience have

been developed to study perceptual bias and top-down

processing. One is the class of ‘ambiguous figures’,

complex visual stimuli that, with practice, can each

be perceived as representing two very different objects

[156–158]. One popular example is the figure that can

be perceived either as a vase or as a human profile.

These stimuli have a distinct advantage for use in the

subtraction paradigms of functional imaging studies, in that

the same complex visual stimulus can be used in each of the

active and control tasks, thereby controlling exquisitely for

all of the basic sensory features of the visual stimulus, such

as intensity, hue, saturation, and the complexity and spatial

relationships among curves and edges. One disadvantage of

these stimuli, however, and perhaps their only disadvantage,

is that the two different percepts that these stimuli permit

have widely varying semantic content, affective valence,



Fig. 13. Reversible geometric figures. Each figure can be perceived in one of two alternative spatial orientations—either with the dot as protruding out of or into

the plane of the drawing. The volitional perception of either of these two orientations is thought to be attributable to top-down processing within the CNS.
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and associative links (consider, for example, the semantic,

affective, and associational links associated with the

percepts of a vase and a human facial profile).

A class of stimuli has been developed that is similar to

the class of ambiguous figures, but its differing percepts do

not have obvious differences in the semantic, affective, and

associative links. This is the class of reversible figures—

typically, two-dimensional geometric forms that can be

perceived in one of two differing three-dimensional spatial

orientations. The example that every schoolchild knows is

the Necker cube, in which the edges connecting the back

and front faces of the cube can be seen as projecting either

upward and to the left, or downward and to the right

(Fig. 13). All that differs across the two percepts is their

spatial orientation. Their semantic identities (e.g. ‘cube’)

are identical, as presumably are their affective and

associative links. These characteristics make reversible

figures seemingly ideal for the study of the neural basis of

top-down processing and perceptual bias in functional

imaging studies, and therefore possibly ideal as well for use

as an experimental model to study the neural basis of the

top-down processing that is involved in producing

and sustaining cognitive distortions, projection, and trans-

ference phenomena. Based on prior studies of top-down

processing and self-regulatory processes, dorsolateral pre-

frontal, cingulate, and striatal regions were hypothesized to

activate during the modulation and control of percepts when

viewing reversible figures.

As predicted, the willful search and stabilization of a

spatial perspective for the reversible figures relative to gaze

fixation was associated with significant activation of

frontostriatal circuits that included dorsolateral prefrontal
Fig. 14. Brain activity during the top-down regulation of sensory percepts. Increase

detected as subjects willfully changed perception between alternative spatial orie

cortex was detected when viewing figures in their backward facing projection com

cortex; F, frontal cortex; S, striatum.
and anterior cingulate cortices, and the dorsal striatum (left

lenticular nucleus and bilateral dorsal caudate nuclei)

(Fig. 14). Viewing of the forms in their back compared

with their front orientation was associated with activation in

the left dorsal parietal region. These findings provide

compelling evidence that frontostriatal systems support the

top-down regulation of sensory percepts and help to

construct human experience according to predefined

cognitive schemas [159].
5. Unconscious memory systems

Freud postulated that unconscious memories could be

either topographically or descriptively unconscious. By

‘topographically’ or ‘dynamically’ unconscious he meant

that conscious memories which were painful or morally

unacceptable could be repressed and thereby moved from

the metapsychological structure of the ego into the

minimally accessible domain of the id [160]. By ‘the

descriptive unconscious’, he meant that memories within

the ego could temporarily pass below a threshold of

conscious awareness while remaining relatively easily

accessible to willed retrieval.

Neuroscience research has shown conclusively that

memory is not a unitary phenomenon; rather, multiple

systems subserve different memory functions. These include

working memory functions based within the frontal lobe,

conditioned motor learning based primarily within the

cerebellum and brainstem, declarative memory functions

within the mesial temporal lobe, affective memory based

within the amygdala and limbic system, and procedural
d acitivity in frontal and anterior cingulate cortices, as well as striatum, were

ntations of the reversible figures (upper row). Increased activity in parietal

pared with their frontward facing ones (lower row). AC, anterior cingulate
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memory based within the dorsal striatum (the caudate and

putamen). Of these systems, not all subserve the conscious

representation of memories. In particular, the learning of

procedures, habits, or stimulus–response (S–R) associations

within the striatum occurs largely outside of consciousness.

This memory system allows one to walk and talk at the same

time, or to navigate through complex traffic systems in a car

while lost deep in thought about the day’s events. This

knowledge of procedures is typically gained gradually

through repeated presentations of the stimulus and the

learning of a correct response. This form of learning stands

in contrast to the single trial learning of conscious facts,

previous experiences, and semantics, which are collectively

termed ‘declarative’ or ‘episodic’ memories and that are

based primarily within the hippocampus [161].

Procedural learning based within the dorsal striatum of

subcortical nuclei would seem to relate most closely to the

Freudian construct of the topographical unconscious,

although even declarative memories can at face value pass

below the threshold of consciousness while remaining

relatively easily accessible to willed retrieval. None of the

multiple, neuroscience-defined learning systems correspond

clearly with the Freudian dynamic unconscious. Never-

theless, we will see that activity in affective neural systems

as well as psychological stress can both preferentially

predispose to use of procedural or habit learning systems for

learning, which generally occur outside of consciousness.

Thus, the dynamic unconscious and repression, if they are

related to any of the currently known memory systems,

probably map to interactions across the systems for affective

and procedural learning, although any claims to the

existence and nature of this correspondence are highly

preliminary and speculative.

The declarative and procedural memory systems have

been studied most extensively in animals moving through

various maze-like environments under controlled sensory,

motoric, and motivational conditions. One set of paradigms

(the ‘radial arm maze’) involves a maze with eight

identically appearing arms extending radially outward

from a central platform, with extra-maze objects visible

from within each portion of the maze. In the more standard

‘win-shift’ version of this paradigm, rats obtain food

rewards by visiting each arm of the maze once, with

re-entries into maze arms previously visited scored as

errors. In a more recently developed ‘win-stay’ version of

this task, rats obtain food rewards by visiting twice each of

4 randomly selected and illuminated maze arms, with visits

to unlit maze arms scored as errors. Performance on the win-

shift task requires rats to remember those arms that have

been previously visited; the task is therefore generally

regarded as a prototypical test of spatial memory or

cognitive mapping. The win-stay task, in contrast, requires

learning to approach a sensory stimulus (the lit arms). It

therefore is regarded as a test of S–R, or procedural,

learning. Rats with electrolytic or neurochemical lesions of

their dorsal striatum or hippocampus exhibit a double
dissociation during learning of these tasks: lesions of

the striatum impair acquisition of the win-stay task but not

the win-shift task, whereas lesions of the hippocampal

system impair acquisition of the win-shift but not the win-

stay task [162,163].

Another paradigm using a water maze task has been used

similarly to study declarative and procedural learning

systems. In a circular pool of water, two rubber balls or

flags protruding above the water surface serve as cues. One

ball (the correct one) is located on top of a platform that can

be used to escape the water, while the other ball (the

incorrect one) is located on top of a thin rod that only

provides support for the ball but does not allow escape. The

two balls also differ in physical appearance (e.g. differing

horizontal or vertical stripes). In a declarative learning

version of the task, the correct platform is located in the

same spatial location but the visual appearance of the ball

varies on every trial. Thus, rats learn to approach the correct

ball on the basis of their memory for spatial location and not

visual pattern. In the procedural learning version of the task,

the correct platform is located in different spatial positions,

but its visual appearance is unchanged across trials.

Therefore, rats learn to approach the platform of the basis

of stimulus properties alone, which again is an S–R,

habitual, or procedural learning solution to the task. Striatal

lesions impair the procedural learning but not declarative

learning forms of the task [164,165]. Electrophysiological

recordings within the basal ganglia and hippocampus during

declarative and procedural learning tasks have confirmed

the central and specific involvement of these regions in

learning and memory [166–168].

5.1. Interaction between memory systems

Procedural and declarative learning systems interact,

compete, and can even interfere with one another’s

functioning [169]. Injection of anxiogenic drugs into the

amygdala, for example, induces the predominant use of

caudate-dependent procedural learning, presumably

because the use of habit is an adaptive response to stress

[170]. Pretraining lesions not only leave the unlesioned

system intact, but they also enhance its functioning relative

to performance in unlesioned control animals [162,163,

171–173]. Furthermore, human imaging studies of pro-

cedural learning paradigms have reported an inverse

correlation of basal ganglia and hippocampus activation

across individual trials [174,175].

5.2. Interaction with prefrontal systems

The basal ganglia have been hypothesized to use the

cortical–subcortical loops in essence to ‘train’ the cortex to

produce learned motor responses in the presence of a

particular pattern of sensory information [176]. If this

hypothesis is borne out more fully, it would suggest that

prefrontal cortices later in life might take on the functions of
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subserving procedural memories that were previously based

within the striatum earlier in development. It is possible, for

instance, that the functions of striatal portions of frontos-

triatal systems required for self-regulatory functions are,

with increasing age, progressively transferred from the

striatum to the prefrontal cortices. Furthermore, prefrontal

cortices and the working memory functions they subserve

are known to interact in complex ways with memory

systems in the mesial temporal lobe and striatum [177–179].

Although the precise functions of these interactions are

unknown, the prefrontal cortices are thought to contribute to

top-down control of the encoding and retrieval of higher-

level representations from heteromodal association cortices

by modifying and elaborating them within striatal and

hippocampal memory systems on the basis of current goals,

task demands, and affective salience [179].

5.3. Human studies of memory systems

The dramatic advances in understanding of memory

systems, fostered by the development of suitable beha-

vioral paradigms in animals, have motivated the develop-

ment of behavioral paradigms within virtual reality

environments that are nearly identical to those used in

animal models. Development of these virtual reality

paradigms has allowed study of multiple memory systems

in humans within the laboratory and within MRI scanners.

If the neural bases of these systems prove to be the same

as their bases in animals, then new knowledge gained in

either the animal or human work will complement one

another and more rapidly advance progress in under-

standing the neural systems subserving memory functions

in both domains.

Considerable progress has been made in developing

these virtual reality environments and in demonstrating

similarities in the neural bases for memory systems in the

brains of humans and animals. One group has developed a

virtual water maze task and demonstrated a robust

behavioral advantage in men compared with women

[180], similar to findings from another group using a

different maze task [181] and consistent with animal and

other human cognitive studies [182–185]. Another group

developed a virtual reality paradigm similar to the water

maze task and reported impaired spatial learning in

individuals with traumatic brain injury [186]. One human

fMRI study examined regional brain activity in humans

during a version of the win-shift radial arm maze paradigm

[187]. They reported that the right hippocampus activated

during use of spatial learning strategies, while the caudate

nucleus activated during use of nonspatial learning

strategies. Frontal and parietal cortices activated during

use of both learning strategies. Activation of either the right

hippocampus [188,189] or the closely related parahippo-

campus [185,190] has been reported in several other studies

employing forms of spatial navigation that were not adapted

from animal paradigms.
6. Conclusion

Although core psychoanalytic constructs may be

impossible to study directly using neuroscience and

imaging methodologies (i.e. brain activity cannot be

studied in patients during psychoanalytic sessions),

experimental paradigms have been developed and are

being applied that are at least relevant to the study of

these constructs. Like all scientific paradigms, these

neuroscience paradigms simplify the field of variables

that are to be examined. Important early insights into the

neural bases of core theoretical constructs within psycho-

analysis suggest that the nucleus accumbens and related

limbic circuitry contribute to the assigning of valence in

the pleasure/unpleasure continuum of affective experience.

The reticular formation, thalamus, amygdala, and cortex

within arousal circuits assign alerting salience to those

affective experiences. Frontostriatal systems subserve

top-down processing in the CNS, thereby contributing to

numerous important psychological functions, including the

control of impulses and drives that are established within

affective systems, and the construction of experience

according to preestablished conceptual schemas—

processes that likely underlie cognitive distortions,

projection, and transference phenomena. Procedural learn-

ing systems likely contribute to memories within the

domain of the descriptive unconscious, and interactions

across affective and cognitive memory systems concei-

vably may contribute to memory formations within the

dynamic unconscious. Progress in further defining the

neural bases of these core constructs will require the close

collaboration of neuroscientists and psychoanalysts in the

development of experimental paradigms that simplify the

analytic field for systematic study while maintaining

reliability and ecological validity. This type of collabor-

ation, however, merely defines the hard work of empirical

research.
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